MATH R104: MATHEMATICS FOR SOCIETY AND THE ARTS

Originator

ptrujillo

College

Oxnard College
Discipline (CB01A)
MATH - Mathematics
Course Number (CB01B)
R104

Course Title (CBO2)

Mathematics for Society and the Arts

Banner/Short Title

Math for Society and the Arts

Credit Type

Credit

Start Term

Fall 2023

Catalog Course Description

This course introduces mathematical ideas and tools used to solve practical problems including logic, sets, numbers, financial calculations, probability, statistics and mathematics in politics, society and the arts. Students majoring in General Studies, Art, and other non-BSTEM majors (Chicana/o Studies, Deaf Studies, English, History, Philosophy, Spanish or many career education majors) that do not require statistics will find this to be an ideal course for meeting mathematics competency and general education requirements for graduation or transfer.

Taxonomy of Programs (TOP) Code (CB03)
1701.00 - Mathematics, General

Course Credit Status (CB04)
D (Credit - Degree Applicable)
Course Transfer Status (CB05) (select one only)
B (Transferable to CSU only)

Course Basic Skills Status (CB08)

N - The Course is Not a Basic Skills Course

SAM Priority Code (CB09)

E-Non-Occupational

Course Cooperative Work Experience Education Status (CB10)

N - Is Not Part of a Cooperative Work Experience Education Program

Course Classification Status (CB11)

Y - Credit Course

Educational Assistance Class Instruction (Approved Special Class) (CB13)

N - The Course is Not an Approved Special Class

Course Prior to Transfer Level (CB21)

Y - Not Applicable

Course Noncredit Category (CB22)

Y - Credit Course
Funding Agency Category (CB23)
Y - Not Applicable (Funding Not Used)
Course Program Status (CB24)
1 - Program Applicable
General Education Status (CB25)
B - Satisfies Math/Quantitative Reasoning req (CSUGE-B B4, IGETC 2, or 4-yr)
Support Course Status (CB26)
N - Course is not a support course

Field trips

Will not be required

Grading method

(L) Letter Graded

Alternate grading methods
(0) Student Option- Letter/Pass
(P) Pass/No Pass Grading

Does this course require an instructional materials fee?
No

Repeatable for Credit
No
Is this course part of a family?
No

Units and Hours

Carnegie Unit Override

No

In-Class

Lecture
Minimum Contact/In-Class Lecture Hours
52.5

Maximum Contact/In-Class Lecture Hours
52.5

Activity
Laboratory

Total in-Class

Total in-Class
Total Minimum Contact/In-Class Hours
52.5

Total Maximum Contact/In-Class Hours
52.5

Outside-of-Class

Internship/Cooperative Work Experience

Paid
Unpaid
Total Outside-of-Class
Total Outside-of-Class
Minimum Outside-of-Class Hours
105
Maximum Outside-of-Class Hours
105
Total Student Learning
Total Student Learning
Total Minimum Student Learning Hours
157.5

Total Maximum Student Learning Hours
157.5

Minimum Units (CB07)
3
Maximum Units (CB06)
3

Prerequisites

Course taught at the level of intermediate algebra or placement as determined by the college's multiple measures assessment process.

Entrance Skills

Entrance Skills

Algebraic fluency with expressions and equations. Understanding functions and graphs.

Requisite Justification

Requisite Type

Prerequisite

Requisite

Course taught at the level of intermediate algebra or placement as determined by the college's multiple measures assessment process

Requisite Description

Course in a sequence

Level of Scrutiny/Justification

Content review

Student Learning Outcomes (CSLOs)

Upon satisfactory completion of the course, students will be able to:
$1 \quad$ Identify and interpret valid statistical analysis.

2 Identify and interpret linear/exponential growth and decay.

Course Objectives

Upon satisfactory completion of the course, students will be able to:
$1 \quad$ Apply rules of logic to determine the validity of arguments.
Recognize use and abuse of percentages and other numbers.
Analyze the implications of compound interest in financial calculations.
Examine how probabilities influence decision-making.
Identify and interpret valid statistical analysis.
Compare and contrast linear/exponential growth and decay.
Explain the roles of mathematics in art and music.
Identify how mathematics is used in politics.
Examine a significant mathematical achievement in history.

Course Content

Lecture/Course Content

Topics to be included, but not limited to:

1. Mathematics and Problem-Solving
a. Propositions and logic
b. Truth tables
c. Sets, Venn diagrams, logical equivalence
d. Arguments and fallacies
e. Problem-solving strategies
2. Mathematics and Numbers
a. Unit analysis and conversion
b. Absolute and relative changes, percentages
c. Big and small numbers in perspective
d. Deceptive and misleading numbers
3. Mathematics and finance
a. Simple and compound interest
b. Continuous compounding
c. Savings and investment
d. Loans and mortgages
e. Federal budget and deficit
4. Probability and Odds
a. Counting principles
b. Permutations and combinations
c. Compound and conditional probabilities
d. Law of Large Numbers, expected value
e. Risk, odds, and probability
5. Data and Statistics
a. Reliability of a statistical study
b. Descriptive statistics - graphs, charts, tables
c. Correlation vs. causality
d. Measures of central tendency and variation
e. Normal distribution and the z-score
6. Growth and Decay
a. Linear modeling
b. Exponential modeling
c. Logarithmic scales
7. Mathematics and the Arts
a. Perspective
b. Proportion and the Golden Ratio
c. Music scales, harmony
d. Fractal geometry
8. Mathematics and Politics
a. Apportionment
b. Theory of voting
c. Big data and politics
9. Selected Topics (Choose one or two from the following topics)
a. Four-color Theorem
b. Infinities
c. Cryptology
d. Topological equivalence
e. Knots, links, and their applications
f. Russell's Paradox (or other paradoxes)
g. Non-Euclidean geometry
h. History and significance of pi
i. Incompleteness Theorem
j. Game Theory
k. Matrices
I. Linear Programming

Laboratory or Activity Content

n/a

Methods of Evaluation

Which of these methods will students use to demonstrate proficiency in the subject matter of this course? (Check all that apply):
Written expression
Problem solving exercises
Skills demonstrations
Methods of Evaluation may include, but are not limited to, the following typical classroom assessment techniques/required assignments (check as many as are deemed appropriate):
Computational homework
Essay exams
Group projects
Individual projects
Journals
Mathematical proofs
Oral presentations
Problem-solving exams
Problem-solving homework
Reports/papers
Research papers
Skills demonstrations
Skills tests or practical examinations
Written creation (poem, screenplay, song)

Instructional Methodology

Specify the methods of instruction that may be employed in this course
Audio-visual presentations
Class activities
Class discussions
Collaborative group work
Computer-aided presentations
Demonstrations
Distance Education
Group discussions
Guest speakers
Instructor-guided use of technology

Internet research
Lecture
Modeling
Small group activities
Web-based presentations

Representative Course Assignments

Writing Assignments

1. A research paper on a math topic such as "mathematics in art" may form a component of this course.

Critical Thinking Assignments

1. Students may complete homework problems involving modeling with exponential functions that require critical thinking using mathematical reasoning.

Reading Assignments

1. Textbook reading on topics such as game theory or fractal geometry

Skills Demonstrations

1. Students will need to practice the methods and procedures used in class when completing their problem solving exercises

Outside Assignments

Representative Outside Assignments

1. Homework assigned from the textbook
2. Projects related to a topic covered in class such as simple and compound interest, and may include student presentations
3. Essays on mathematical topics may be assigned

Articulation

Comparable Courses within the VCCCD
MATH M12-Mathematical Reasoning for Liberal Arts
MATH V40 - Exploration of Mathematical Ideas
Equivalent Courses at other CCCs

College	Course ID	Course Title	Units
College of the Canyons	Math 100	Liberal Arts Mathematics	3

District General Education

A. Natural Sciences

B. Social and Behavioral Sciences

C. Humanities
D. Language and Rationality

D2. Communication/Analytical Thinking
Proposed

E. Health and Physical Education/Kinesiology

F. Ethnic Studies/Gender Studies

CSU GE-Breadth
Area A: English Language Communication and Critical Thinking
Area B: Scientific Inquiry and Quantitative Reasoning
B4 Mathematical/Quantitative Reasoning
Proposed
Area C: Arts and Humanities
Area D: Social Sciences
Area E: Lifelong Learning and Self-Development
Area F: Ethnic Studies
CSU Graduation Requirement in U.S. History, Constitution and American Ideals:
UC TCA
UC TCA
Proposed

IGETC

Area 1: English Communication
Area 2A: Mathematical Concepts \& Quantitative Reasoning
Area 2A: Mathematical Concepts \& Quantitative Reasoning
Proposed
Area 3: Arts and Humanities
Area 4: Social and Behavioral Sciences
Area 5: Physical and Biological Sciences
Area 6: Languages Other than English (LOTE)
Textbooks and Lab Manuals
Resource Type
Textbook
Classic Textbook
Yes
Description
Bennet and Briggs (2019) Using \& Understanding Mathematics: A Quantitative Reasoning Approach (7th). Pearson. 9780134705187

Resource Type

Textbook

Classic Textbook
 No

Description

Lippman, David (2017). Math in Society: A Survey of Mathematics for the Liberal Arts Major(free OER) (version 2.5) www.opentextbookstore.com/mathinsociety

Library Resources

Sufficient Library Resources exist

Yes

Distance Education Addendum

Definitions

Distance Education Modalities

Hybrid (1\%-50\% online)
Hybrid (51\%-99\% online)
100\% online

Faculty Certifications

Faculty assigned to teach Hybrid or Fully Online sections of this course will receive training in how to satisfy the Federal and state regulations governing regular effective/substantive contact for distance education. The training will include common elements in the district-supported learning management system (LMS), online teaching methods, regular effective/substantive contact, and best practices.
Yes
Faculty assigned to teach Hybrid or Fully Online sections of this course will meet with the EAC Alternate Media Specialist to ensure that the course content meets the required Federal and state accessibility standards for access by students with disabilities. Common areas for discussion include accessibility of PDF files, images, captioning of videos, Power Point presentations, math and scientific notation, and ensuring the use of style mark-up in Word documents.
Yes
Regular Effective/Substantive Contact
Hybrid (1\%-50\% online) Modality:

Method of Instruction	Document typical activities or assignments for each method of instruction
Asynchronous Dialog (e.g., discussion board)	Regular use of asynchronous discussion boards encourages various types of interaction and critical thinking skills among all course participants. Questions and topics posed will allow students to discuss, compare and contrast, identify, and analyze elements of the course outcomes. Other discussion boards may be used for Q\&A and general class discussion by students and instructor to facilitate student success and strengthen student learning outcomes.
	E-mail, class announcements and various learning management system E-mail tools such as "Message Students Who" and "Assignment comments" will be used to regularly communicate with all students on matters such as clarification of class content, reminders of upcoming assignments and/or course responsibilities, to provide prompt feedback to students
	on coursework to facilitate student learning outcomes, or to increase the role of an individual educator in the academic lives of a student.
	Students will be given multiple ways to email instructor through both the
learning management system inbox and faculty provided email accounts.	

Video Conferencing	Video tools such as ConferZoom may be used to provide live synchronous or asynchronous sessions with students. ADA compliance will be upheld with Closed Captioning during the session or of the
recorded session. Student-to-student group meetings will also be	
encouraged.	
Other DE (e.g., recorded lectures)	
Students will watch recorded video lectures.	

Examinations

Hybrid (1\%-50\% online) Modality
On campus
Online
Hybrid (51\%-99\% online) Modality
On campus
Online

Primary Minimum Qualification

MATHEMATICS

Review and Approval Dates

Department Chair

05/09/2023
Dean
05/09/2023
Technical Review
05/10/2023
Curriculum Committee
05/10/2023

DTRW-I

MM/DD/YYYY
Curriculum Committee
MM/DD/YYYY
Board
MM/DD/YYYY
CCCCO
MM/DD/YYYY
Control Number
CCC000635209
DOE/accreditation approval date
MM/DD/YYYY

