MATH R101: MATHEMATICS FOR THE LIBERAL ARTS MAJOR

Originator

ptrujillo

College

Oxnard College
Discipline (CB01A)
MATH - Mathematics
Course Number (CB01B)
R101
Course Title (CB02)
Mathematics for the Liberal Arts Major

Banner/Short Title

Math for Liberal Arts Major

Credit Type

Credit

Start Term

Fall 2023

Catalog Course Description

This is an advanced course in algebra for majors in the liberal arts (English, Art, History, Philosophy, Foreign Languages, Music, Theatre, Dance, Film). This course focuses on how to solve and apply equations that include rational, linear, absolute value, polynomial, exponential, and logarithmic equations; solve linear and nonlinear systems of equations and inequalities; apply functions and other algebraic techniques to model real world applications. This course includes applications to many areas within liberal arts fields.

Taxonomy of Programs (TOP) Code (CB03)
1701.00 - Mathematics, General

Course Credit Status (CB04)
D (Credit - Degree Applicable)
Course Transfer Status (CB05) (select one only)
A (Transferable to both UC and CSU)
Course Basic Skills Status (CB08)
N - The Course is Not a Basic Skills Course
SAM Priority Code (CB09)
E-Non-Occupational
Course Cooperative Work Experience Education Status (CB10)
N - Is Not Part of a Cooperative Work Experience Education Program

Course Classification Status (CB11)

Y - Credit Course
Educational Assistance Class Instruction (Approved Special Class) (CB13)
N - The Course is Not an Approved Special Class

Course Prior to Transfer Level (CB21)

Y - Not Applicable

Course Noncredit Category (CB22)

Y - Credit Course
Funding Agency Category (CB23)
Y - Not Applicable (Funding Not Used)
Course Program Status (CB24)
1 - Program Applicable
General Education Status (CB25)
B - Satisfies Math/Quantitative Reasoning req (CSUGE-B B4, IGETC 2, or 4-yr)
Support Course Status (CB26)
N - Course is not a support course

Field trips

Will not be required

Grading method

(L) Letter Graded

Does this course require an instructional materials fee?
No

Repeatable for Credit

No
Is this course part of a family?
No

Units and Hours

Carnegie Unit Override

No
In-Class
Lecture
Minimum Contact/In-Class Lecture Hours
52.5

Maximum Contact/In-Class Lecture Hours
52.5

Activity
Laboratory

Total in-Class

Total in-Class
Total Minimum Contact/In-Class Hours
52.5

Total Maximum Contact/In-Class Hours
52.5

Outside-of-Class

Internship/Cooperative Work Experience

Paid
 Unpaid
 Total Outside-of-Class
 Total Outside-of-Class
 Minimum Outside-of-Class Hours
 105
 Maximum Outside-of-Class Hours
 105
 Total Student Learning
 Total Student Learning
 Total Minimum Student Learning Hours
 157.5
 Total Maximum Student Learning Hours
 157.5

Minimum Units (CB07)
3
Maximum Units (CB06)
3

Prerequisites
Course taught at the level of intermediate algebra or placement as determined by the college's multiple measures assessment process

Entrance Skills

Entrance Skills

Algebraic fluency with expressions and equations. Understanding functions and graphs.

Requisite Justification

Requisite Type
Prerequisite

Requisite

Course taught at the level of intermediate algebra or placement as determined by the college's multiple measures assessment process

Requisite Description

Course in a sequence

Level of Scrutiny/Justification

Content review

Student Learning Outcomes (CSLOs)

Upon satisfactory completion of the course, students will be able to:

1	Students will graph polynomial equations
2	Students will apply transformations to the graph of functions

Course Objectives	
	Upon satisfactory completion of the course, students will be able to:
1	Analyze and investigate properties of functions
2	Synthesize results from the graphs and/or equations of functions
3	Solve and apply equations including rational, linear, absolute value, polynomial, exponential, and logarithmic equations
4	Solve linear and nonlinear systems of equations and inequalities
5	Apply functions and other algebraic techniques to model real world applications
6	Apply transformations to the graphs of functions
7	Use linear programming to solve problems
8	Solve and apply linear systems using matrices and determinants

Course Content

Lecture/Course Content

1. Functions including linear, polynomial, absolute value, rational, radical, exponential, logarithmic: definitions, evaluation, domain and range
2. Algebra of functions
3. Graphs of functions including asymptotic behavior, intercepts, vertices
4. Equations including rational, linear, absolute value, polynomial, radical, exponential, logarithmic
5. Linear and nonlinear inequalities
6. Systems of equations
7. Complex numbers
8. Introduction to the following:
a. Linear programming
b. Matrices and determinants

Laboratory or Activity Content

None

Methods of Evaluation

Which of these methods will students use to demonstrate proficiency in the subject matter of this course? (Check all that apply):
Written expression
Problem solving exercises
Skills demonstrations
Methods of Evaluation may include, but are not limited to, the following typical classroom assessment techniques/required assignments (check as many as are deemed appropriate):
Computational homework
Group projects
Individual projects
Mathematical proofs
Objective exams
Problem-solving exams
Quizzes
Problem-Solving Assignments

Instructional Methodology

Specify the methods of instruction that may be employed in this course
Audio-visual presentations
Class activities
Class discussions
Collaborative group work
Computer-aided presentations
Demonstrations
Distance Education
Group discussions
Instructor-guided interpretation and analysis
Instructor-guided use of technology
Lecture
Small group activities

Describe specific examples of the methods the instructor will use:

1. Instructor-led class discussion on theories and processes used to analyze functions and their graphs.
2. Instructor lecture and/or demonstration of concepts such as the various techniques used to generate sequences and series.
3. Small group practice utilizing mathematical skills and problem-solving techniques. For example, given a function, analyze the attributes of the function and sketch the graph.
4. Use of technology, such as graphing or online calculators.

Representative Course Assignments

Writing Assignments

1. Written responses (for example, use your own words to explain how to determine if two functions are inverses of each other).

Critical Thinking Assignments

1. Participate in class and small group discussions discussing, debating, and developing problem solving techniques in real world applications.
2. Developing error-analysis skills to find any algebraic mistakes in a problem.

Reading Assignments

1. Textbook readings of definitions, rules, properties, processes, and helpful hints.
2. Critical reading and thinking in application problems (for example, a person standing close to the edge of an 80-foot cliff throws a rock upward with an initial speed of 64 feet per second. The height of the rock is described by the function $y=-16 x 2+64 x+80$. After how many seconds will the rock reach its maximum height above the water?).

Problem-Solving and Other Assignments (if applicable)

1. Student projects permitting more in depth exploration of course topics.

Outside Assignments

Representative Outside Assignments

1. Homework skill building exercises.
2. Preparation for exams (including review of notes, watching video, practice exams) logarithmic properties.

Articulation

C-ID Descriptor Number
MATH 150

Status

Approved
Comparable Courses within the VCCCD
MATH V04-College Algebra
MATH M1 1 - College Algebra for the Liberal Arts

District General Education

A. Natural Sciences
B. Social and Behavioral Sciences
C. Humanities
D. Language and Rationality
E. Health and Physical Education/Kinesiology
F. Ethnic Studies/Gender Studies

CSU GE-Breadth
Area A: English Language Communication and Critical Thinking
Area B: Scientific Inquiry and Quantitative Reasoning
Area C: Arts and Humanities
Area D: Social Sciences
Area E: Lifelong Learning and Self-Development
Area F: Ethnic Studies
CSU Graduation Requirement in U.S. History, Constitution and American Ideals:
IGETC
Area 1: English Communication
Area 2A: Mathematical Concepts \& Quantitative Reasoning
Area 3: Arts and Humanities
Area 4: Social and Behavioral Sciences
Area 5: Physical and Biological Sciences
Area 6: Languages Other than English (LOTE)
Textbooks and Lab Manuals
Resource Type
Textbook
Description
Karl J. Smith (2016). The Nature of Mathematics (12th). Brooks Cole.

Resource Type

Textbook
Description
Fleron, J., Hotchkiss, P., Ecke, V., \& Von Renesse, C. (2020). Discovering the Art of Mathematics. National Science Foundation.

Description

Graphing Calculator

Distance Education Addendum

Definitions

Distance Education Modalities

Hybrid ($1 \%-50 \%$ online)
Hybrid ($51 \%-99 \%$ online)
100\% online

Faculty Certifications

Faculty assigned to teach Hybrid or Fully Online sections of this course will receive training in how to satisfy the Federal and state regulations governing regular effective/substantive contact for distance education. The training will include common elements in the district-supported learning management system (LMS), online teaching methods, regular effective/substantive contact, and best practices.
Yes
Faculty assigned to teach Hybrid or Fully Online sections of this course will meet with the EAC Alternate Media Specialist to ensure that the course content meets the required Federal and state accessibility standards for access by students with disabilities. Common areas for discussion include accessibility of PDF files, images, captioning of videos, Power Point presentations, math and scientific notation, and ensuring the use of style mark-up in Word documents.
Yes
Regular Effective/Substantive Contact

Hybrid (1\%-50\% online) Modality: Method of Instruction	Document typical activities or assignments for each method of instruction
Asynchronous Dialog (e.g., discussion board)	Students will post a discussion board topic on the process of finding the maximum height of a projectile, and they will respond to other classmates with the intent of dialogue. Video tools such as ConferZoom may be used to provide live synchronous or asynchronous sessions with students. ADA compliance will be upheld with Closed Captioning during the session or of the recorded session. Student-to-student group meetings will also be encouraged. Video Conferencing
Students will watch lecture videos. Responses to specific questions.	
E-mail (e.g., recorded lectures)	Document typical activities or assignments for each method of Hystruction
Method of Instruction	Students will post a discussion board topic on the process of finding the maximum height of a projectile, and they will respond to other classmates with the intent of dialogue.
Asynchronous Dialog (e.g., discussion board)	Video tools such as ConferZoom may be used to provide live synchronous or asynchronous sessions with students. ADA compliance will be upheld with Closed Captioning during the session or of the recorded session. Student-to-student group meetings will also be encouraged. Students will watch lecture videos.
Video Conferencing	Responses to specific questions.

100\% online Modality:

Method of Instruction	Document typical activities or assignments for each method of instruction
Asynchronous Dialog (e.g., discussion board)	Students will post a discussion board topic on the process of finding the maximum height of a projectile, and they will respond to other classmates with the intent of dialogue.
Video Conferencing	Video tools such as ConferZoom may be used to provide live synchronous or asynchronous sessions with students. ADA compliance will be upheld with Closed Captioning during the session or of the recorded session. Student-to-student group meetings will also be encouraged.
Other DE (e.g., recorded lectures)	Students will watch lecture videos. E-mail

Examinations

Hybrid (1\%-50\% online) Modality
On campus
Online
Hybrid (51\%-99\% online) Modality
On campus
Online

Primary Minimum Qualification
MATHEMATICS

Review and Approval Dates

Department Chair

05/10/2023
Dean
05/10/2023

Technical Review

05/10/2023

Curriculum Committee

05/10/2023

DTRW-I

MM/DD/YYYY

Curriculum Committee

MM/DD/YYYY

Board

MM/DD/YYYY
CCCCO
MM/DD/YYYY
Control Number
CCC000570373
DOE/accreditation approval date
MM/DD/YYYY

